Jupiter, current images from June 2017 on...
July 7, 2020.
It was clear this morning, but the atmosphere was troubled. I went back anyway. I took eleven 60 second raw videos with the ASI224MC, 2x Barlow and the 7.25” Schupmann. I kept 50% of the frames when I aligned and stacked in Autostakkert!2, sharpened each image in Registax, derotated in WinJUPOS and stacked and sharpened
again to give the result below. Came out better than I expected. I also combined all 11 images to give the animated GIF.
May 17, 2020. This morning, starting around 4:30 am, I imaged Jupiter with the ASI224MC, 2x Barlow and 7.25" Schupmann. azy, variable transparency, below average seeing. 17 usable 60 second videos of 4916 frames each were obtained from 4:28 to 4:51 using an exposure of 12.2 ms. Aligned and stacked best 5% in Autostakkert3, sharpened in Registax6 and put together in GIMP to make the animation below. Resolution not nearly as good as the result from the 14th, but does show the GRS, and a pronounced strip of beige colored cloud filling the GRS Hollow on the North side.
May 14, 2020. Seeing was predicted to be average this morning. It may have been average for good observing sites, but was way above average for NJ. I coupled the ASI174MC to the 7.25" Schupmann with a 2x Barlow lens and took 5 one minute videos of Jupiter with the shutter set at 14.3 ms and gain at 75%. Autostakkert3 was used to align and stack the best 10% of the 2342 frames in each video and the resulting stacks sharpened in Registax6. WinJUPOS was then used to derotate and stack the 5 images. After slight additional sharpening in Registax, the result shown below was obtained. Not quite diffraction limited, but way better than usual.
July 12/13, 2019. Seeing was poor and the sky murky with variable overcast when I took a set of 34 sixty second videos with the ASI183MC, 1.5x Barlow and the 7.25" f/14 Schupmann. I processed them with AS!3, Registax6 and Photoshop. I was not completely successful balancing the color in the presence of twilight background contributing lots of blue to the images in the early part of the sequence. See animated GIFs above. Definition is better in the monochrome version because there are more levels of grey available than color intensities.
The images were derotated and stacked in groupe of 16 to give a 4x enhancement of signal to noise ratio. This gave a considerable improvement to the otherwise mediocre images. These are shown below.
August 10, 2019. Seeing was a bit better than expected tonight when I imaged Jupiter with the ASI183MC, 1.5x Barlow and the 7.25" Schupmann Medial. I got 32 images in total, and the seeing was better at the beginning. The Image below is the derotated stack of the eimages prepared from the first 9 of the videos. The animated GIF above was made from all 32.
July 29, 2019. Seeing was definitely above average for NJ tonight. Using the ASI183MC, 1.5x Barlow and the 7.25” Schupmann, I got 45 thirty second videos of Jupiter spaced 2 minutes apart using the Autorun feature of FireCapture. I have processed the first 9 of them and derotated and stacked the images prepared from the best 25% of the 1492 frames in each video to give the result shown below and the animated GIF above.
July 28, 2019. Captured the beginnings of the transit of Io in a set of 30 second videos taken between 01:28 amd 02:24 UT. Stacks of the best 25% of the frames in each video were combined to create the animated GIF shown above. The images were derotated and stacked in groups of 9 images each to make the set of three images shown below. Stacking 9 images increases the signal to noise ratio 3x.
July 27, 2019. The above image is a derotated stack of imaes from the first 9 videos taken of Jupite with the SSI183MC at the f/14 focus of the 7.25" Schupmann. The animated GIF below was made from all 27 images from videos taken between 00:36.9 and 01:25.3 UT. Taken with the ASI183MC at the f/14 focus of the 7.25" Schupmann Medial.
July 26, 2019. The animated GIF below was made from 61 images from videos taken between 00:36.5 and 02:38.9 UT. Taken with the ASI183MC at the f/14 focus of the 7.25" Schupmann Medial.
The above are derotated stacks made from 9 images each from the set of 61 videos.
July 25, 2019. I obtained 52 images of Jupiter tonight during a transit of Ganymede spaced 2 minutes apart. They were constructed from the best 25% of 3981 frames from 30 second videos taken with th ASI183MC at the f/14 focus of the 7.25" Schupman Medial telescope. The videos were obtained between 00:38 and 02:16 UT. The images were put together using GIMP to make the animated GIF shown below. Ganymede appears as a grey spot over the brigher central part of Jupiter in the North Polar Region (bottom) but becomes relatively much brighter when it passes over the darkened limb region on the east (left here) limb of Juptier.
July 17, 2019. Using the ASI183MC coupled to the 7.25" Schupman Medial with a 1.5x Barlow, I obtained
43 one minute long videos last night under variable transparency conditions and below average seeing. Below is the derotated stack of the images made from the best
15% of the frames from each video. Note the blue spots within the South Tropical disturbance to the west of the GRS and on the eastern edge of the GRS. I am not sure how much credence
to place in the blue color since a lot of the dark detail (for example, the NTB itself) has a blue cast to it. This might just be NJ light pollution scattered from the thin overcast I was
imaging through. However, the spots are NOT red like the “flakes” seen in these locations over the last few weeks. An animated GIF made from all 43 images is shown above. The
satellite Europa is transiting Jupiter and can be seen emerging from the eastern limb in the last few frames of the GIF. The moving dark spot coming in from the western limb is the shadow
of Europa. Both Europa and its shadow are blurred out of visibility in the derotated stack. The white arcs to the right and left of the image of Jupiter are artifacts of the
derotation and stacking process.
July 11, 2019. Seeing was a lot better tonight than last night as was the transparency. I took 25 videos of 45 seconds duration with a 15 second gap between them. Videos processed in Autostakkert!2, keeping the best 25% of 2257 frames. Images sharpened in Registax6 and then derotated and stacked again using WinJUPOS and further sharpened in Registax. The result is shown above. I also used GIMP to prepare the animated GIF from the 25 images, shown below.
July 5, 2019. Another night of considerably better than usual seeing for NJ. I am guessing it is at least 7/10 at the low altitude of Jupiter. Probably would have been near perfect overhead. I got 33 one minute videos with the ASI183MC camera, 1.5x Barlow lens giving about f/21 with the f/14 Schupmann. Transparency was not that great, requiring 20 to 30 ms exposures. I used the autohistogram tool in Firecapture to keep the histogram maximum at 70%. Processed in Autostakkert!2 keeping the best 50% of the ~3000 frames per video. I used wavelets in Registax6 to sharpen the images and GIMP to assemble them into the animated GIF shown above. Note the transit of Io and the brief appearance of its shadow at the end of the animation.
Five of the 33 images obtained from the videos are shown above showing the progress of the transit of Io as well as the appearance of the shadow in the last two. Note the large red mass to the right (west) of the GRS. If it follows the course of similar masses formed earlier it will swing around the GRS in the counterclockwise direction and join the row of brown wave like formations in the Jet Stream moving to the left (east). South is up in all these images.
The area around the GRS was cropped and converted to greyscale for the animated GIF shown below. Greyscale GIFs have much better resolution of intensity levels. I was hoping to see circulation within the GRS or motion of the "flake" to the west. If there is motion, it is very slignt.
July 4, 2019. Although it was cloudy and even rained a bit during the day, the skies cleared in the evening and the Jet Stream stayed well to the north of NJ giving me another night of decent seeing. Again, at the altitude of Jupiter it was not that great, but this apparition, I take what I can get. I used the ASI183MC, 1.5x Barlow and the 7.25" Schupmann to take 35 videos of one minute duration giving me about 3400 frames in each one. Overall quality was good enough that I could align and stack 25% of the frames from each video giving me 35 images from which the animated GIF shown above was created using GIMP. I then used WinJUPOS to derotate and stack the first 4, the first 16 and finally all 35 images to give the results shown below.
July 2, 2019. Seeing was WAY better than usual on the evening of July 1, maybe up to 6/10, not up to Chris Go’s tropical standards, but I’ll take it. I got 51 one minute videos with the ASI183MC, 1.5x Barlow and the 7.25” Schupmann. The effective focal ratio is about f/21. The attached image is the derotated stack of 10% of the best frames from only the first 16 videos. Each video had about 3400 frames, keeping only 340 of them gave me a s/n improvement of about 18, and after derotating and stacking another factor of 4 for and overall improvement of about 73, and I could see a fair amount of detail on the raw video on the computer. This is by far my best image of the current apparition. All 51 images were combined to make the animated GIF shown above. You can see that the seeing was deteriorating towards the end of the sesson.
Monochrome animated GIF from firsrt 16 images of session when the seeing was best.
June 29, 2019.
When I got home from the AAI meeting the sky was a bit murky, but Jupiter was looking pretty bright and the sky seemed steadier than usual. I was able to get 17 decent one minute videos
with the ASI183MC, 1.5x Barlow attached to the 7.25” Schupmann, effective focal ratio of the combination about f/21. After the usual processing, stacking, derotating and stacking again I
got the result below: The tan haze remains over the EZ and much of the SEB. NEB is dark and looks like chocolate. Oval BA (aka red spot junior) is close to the meridian on the
north edge of the South Temperate belt. It is not very red these days. A monochrome animated GIF made from the 17 images is shown above.
June 27, 2019. Seeing last night, while still nothing to write home about, was better than the usual awful at the low altitude of this
opposition, I am guessing 2 or 3 on a scale of 1-10. Even with the mediocre seeing, I was happy to be able to see Jupiter at all, given all the rain we have had
The appearance of the GRS in the red layer of the visible light image and the NIR image is compared in image shown below. Note that the GRS is larger and more distinct in the NIR image. I believe this is because the GRS is partially obscured, particularly on the northern side by a thin layer of clouds that is penetrated by the NIR.
May 28, 2019. Seeing was predicted to be good this morning, at least overhead. The jet stream velocity was only 50 mph. All bets are off, however, for an object with an altitude as low as a planet in a summer opposition as seen from 40° North Latitude. Jupiter was at an altitude of only 27° when on the meridian. Down in the soup. However, it was clear with reasonable transparency when I went out at 1 am to open up the observatory. I pointed the 7.25" f/14 at Jupiter and took a set of 14 one minute videos with the ASI183MC camera. The cloud belts could be easily made out on the screen image, as well as the tan color of the equatorial zone, but the focus was quite soft. I used Io as a focus object, but could not get a decent point focus. At best focus it was a fuzzy blob. The 2.4 micron pixels gave adequate sampling without the need for additional amplification from a Barlow lens, particularly since my resolution element was a seeing limited blob, not an Airy disk.
I aligned and stacked the 10,000 or so frames from each video using Autostakkert!2, keeping only the best 10% of the frames, sharpened with wavelets in Registax6, and then derotated and stacked using WinJUPOS, finally sharpening a bit more in Registax6. The result is shown below. It is unfortunate that the GRS was on the other side of the planet. I had hoped to catch the latest "flaking off" event recorded by Anthony Wesley and Chris Go.
I also used GIMP to create an animated GIF from all 14 images. It is shown above. The rotation is a bit erratic. A frame may be out of order, but the layers looked right in GIMP.
May 25, 2019. By the time Jupiter cleared the trees from the point of view of my observatory, the interesting stuff going on with the GRS had vanished around the eastern limb of the planet. I took a set of 18 one minute videos with the ASI183MC camera at the f/14 focus of the 7.25” Schupmann Medial Refractor. As low as Jupiter was in the south, it was necessary to tweak up the color fringes caused by atmospheric dispersion using the micrometer screws on the field mirror of the telescope, a handy feature of this design. Had I been using the C11, I would have used the ZWO Atmospheric Dispersion Compensator. Seeing was poor at the low altitude of degrees although the Clear Sky Chart projected average seeing overhead. Jet stream forecast had 60 mph winds overhead. Could be worse.
May 22, 2019. Seeing was projected to be average with no cloud cover and good transparency in the wee hours of the morning. I got up a 1 am and opened up the observatory and set the 7.25", f/14 Schupmann on Jupiter. I decided to try the new ASI183MC camera. With 2.4 micron pixels, it really needs no amplification beyond the native f/14 of the little Schupmann to achieve Nyquist sampling. At the low altitude of Jupiter, seeing was actually quite poor, but I got a set of 54 sixty second videos between 1:25 and 2:25 am EDT. I processed all of the videos in Autostakkert2, keeping only the best 10% of the 11,182 frames of each video, sharpened with wavelets in Registax6, and created the following animated GIF using GIMP:
April 29, 2019. Seeing wasn’t very good this morning, but heck, if I didn’t have poor seeing, I wouldn’t have any seeing at all! I took 36 sixty second videos this morning between 3:20 and 4 am using the ASI224mc, 1.5x Barlow and the Schuppy. Seeing was good enough to focus and actually see bands on the computer monitor, but no fine detail. I processed with Autostakkert! 2, keeping only the best 15% of 7280 frames, sharpened in Registax6 and derotated and stacked groups of 10, 10, 10, and 6 images. The resulting four images are attached. Interesting overall reddish brown cast to the clouds this year with a pronounced light brown coloration to the Equatorial Zone. Quite a change from last year.
March 28, 2019.
Seeing was a bit better this morning than yesterday, maybe as good as 3/5. Shown above is the final derotated stack of the images from 23 one minute videos
(best 25% of frames) taken between 5:53 and 6:19 this morning. I also composed the animated GIF shown below from the 23 individual frames. The ASI224MC camera, 1.5x Siebert
Barlow and the 7.25” f/14 Schupmann Medial telescope were used.
March 27, 2019
March 19, 2019.
The sky was clear when I got up at 5:30 this morning and set up the 7.25”, f/14 Schupmann to image Jupiter. Seeing was not too bad, perhaps 2/5. I used the ASI224MC one-shot color camera coupled to the Schupmann with a 1.5” Siebert Barlow lens. This combination gives f/24 with the longer spacing involved with the camera compared to what an eyepiece would give. Shutter and gain were set to 8.8 ms and 351 to give a histogram about 50% saturated.I took a set of 23 one minute videos between 5:54 and 6:21 am. Each video contained 6818 frames. The best 25% of the frames of each video were aligned, stacked and sharpened in Autostakkert2 and Registax6, then the 23 images were derotated and stacked in WinJUPOS to give the two final images in the first attachment. The first image, at UT=10:07.8 was made from all of the images. The second one at 10:14.2 was made using only the last 12 of the images. It shows the GRS peeking over the western limb a bit better. I also combined all 23 images to give an animated GIF which is also attached.Note the strong tan coloration to the EZ. In recent years it has been snow white with blue festoons. Oval BA is near the meridian in the southern part of the STB and the GRS is on the west (right) limb sitting in the SEB.
March 13, 2019. To check on reports of significant changes in Jupiter's appearance this apparition, I went to Sperry Observatory this morning where the eastern horizon is a lot better than mine at home along with my friend Jim Nordhausen. We got there around 4:30 AM and opened up the dome of the 24" reflector and attached the 8" off axis stop and my ASI224MC camera. Image on the laptop screen could barely be focused, confirming my suspicion that the seeing would not support the full 24" aperture. We took 11 videos of 1 minute duration and an exposure of 1 ms. Processing was with Autostakkert2, Registax6 and WinJUPOS. The above image is the derotated stack of all eleven images, each one of which was the stack of the best 15% of the frames from each of the videos. Resolution is quite poor because of the seeing, however, one can see that the EZ is much darker than usual and has an amber hue, quite different from the white clouds with blue festoons it usually has. Note also that the STB is not visible.
August 24, 2018. The animated GIF above and the derotated stack of 16 images of Jupiter from videos taken between 00:25 and 00:40 UT shown at the left are the last I'll be taking for a while with the Schupmann. While setting up on Saturn, my next target of the evening, the AT1200GTO mount decided to have a fit of sorts. It spontaneously, with no buttons pushed by myself, began slewing in declination, pointing the telescope down towards the floor. The STOP button between the NSEW buttons failed to stop it and I had to turn off the power to avoid it winding up in the cables. The next day I was able to reproduce the behavior with the declination motor and worm gear assembly disconnected from the mount but with the motor cable connected. Gotta talk to George at AP. Meanwhile, back to the C14...
August 23, 2018. Seeing was definitely above average tonight. Predictions were not so favorable. I was able to collect a series of videos, all with the 850 nm cutoff IR filter and ASI290MM with 1.5x Barlow on the 7.25" Schupmann Medial showing the transit of Io and Europa on Jupiter. The images were assembled into an animated GIF shown at the left.
July 16, 2018. Making do with the C11. Schupmann is out of service pending repair of the electonics for the AP1200GTO mount damaged in an electrical storm on the night of July 5/6. This image is a derotated stack of 5 images obtained from videos taken between 9:05 and 9:10 PM using the ASI224MC, ZWO ADC on the CPC1100EdgeHD. Seeing was poor at the altitude of Jupiter.
July 4, 2018 This is first light for my newly refurbished 7.25 Schupmann Medial which I have mounted on the AP1200GTO mount. Conditions were hazy, hot and humid with good seeing overhead and usable seeing at the low altitude of Jupiter tonight. Image was jiggling about furiously, but with detail showing through the mess. I took 12 sixty second videos of Jupiter with the ASI224MC one-shot color CMOS camera using an exposure of 2.4 ms and a gain of 432. Videos were processed in Autostakkert3, Registax6 and then derotated and stacked again to give the result shown at the left. The image is not as fully resolved as the Schupmann is capable of, but the seeing was not steady enough to support any higher magnification. I would normally use a 2x Barlow to give f/28 or so. Still, it is the best resolution so far this year. I believe the 7.25" Schupmann is a much better match for the NJ atmosphere than the C14.
The equatorial zone (EZ) and the North Equatorial Belt (NEB) have some kind of turbulent interaction going on.
May 23, 2018. Seeing was poor when I took this image of the transit of Io and its shadow on Jupiter. Taken about 22:48 EDT with my ASI224MC at the f/11 focus of my C14.
May 9, 2018. The extremely unusual combination of no jet stream overhead and clear skies conspired to give me my first decent imaging opportunity with Jupiter so far this year. I captured a total of 26 one minute videos of Jupiter with the C14 and 2x Barlow, Atmospheric dispersion compensator and ASI225MC camera. Here is the derotated stack of the best 25% of the frames of the first 17 videos.
April 23, 2018. This morning I imaged Jupiter between 5:07 and 5:21 taking sixteen 60 sec raw 8-bit videos with the ASI224MC coupled to the C14 with the ZWO atmospheric
dispersion compensator with the lenses from a 2x Shorty Barlow screwed on the front. Effective focal ratio was f/25, I aligned and stacked the best 10% of the frames with
dither/drizzling to recover the color information in Autostakkert5. I sharpened with Registax6, then derotated and stacked all 16 images using WinJupos. This is my first image of this
opposition season. Hope we get no more nor'easters!
July 9 2017. Seeing was projected to be above average this evening, and the jet stream was east of NJ. I turned on the fans at 6pm and opened up the observatory roof at 8pm and began taking video at 8:36 PM EDT. For the next half hour or so I took 60 second videos in rapid succession hoping to catch some good seeing. Was not to be. Seeing remained poor through the whole session. The videos were processed in AS!2 as usual keeping the best 25% of the frames and sharpening in Registax6. WinJUPOS was then used to derotate and stack all 31 images, followed by wavelet sharpening again. The result is shown at the left.
The images were also assembled into an animated GIF which is shown below. Note seeing getting worse near the end of the animation as Jupiter is getting lower.
July 5, 3017. My TEMP-est fans for the C-11EdgeHD arrived! I installed them today and the weather gave me a fairly crummy chance to try them out. As soon as the sun went below the treeline I opened up the observatory and turned on the fans. I began imaging as soon as I could see Jupiter in the finder. That was around 8 pm. Still a lot of blue daylight present and the haze scattered a lot of light, but an eclipse by Io was in progress and Ganymede was pretty close too. Over the course of the next hour I obtained 9 images with only fair seeing and variable haze and had to shut down when clouds came in around 9 pm. I was imaging with the ASI174MC, ADC and the 2x shorty Barlow lens and cell screwed on the front of the ADC. This gives me about f/20. I took 60 sec videos and processed with AS2! and Registax. Result looked a bit jaggy, so I reprocessed using 1.5x drizzling. Results shown below. Note image taken at 00:16:29 UT. I had turned the fans off just before taking it and back on before the next image taken at 00:27:04 UT. Note the ears on Io’s shadow in the image taken with the fan off. Looks like it is doing something.
Compare the image below taken last spring with my recent images. My equipment has not significantly changed, nor my techniques. But the seeing is simply terrible this year.
June 25, 2017. Partly cloudy with clear patches tonight. I opened up the observatory around sunset to allow the telescope to begin equilibrating. The ASI174MC was fitted to the back of my atmospheric dispersion compensator with the lens cell from a 2x shorty Barlow on the front with NIR blocking filter. Starting at 9:19 pm I took a set of six videos of 60 second length. Each video had about 15,400 frames. I aligned and stacked the best 5% from each video with Autostakkert and sharpened with wavelets in Registax. The 6 images were then derotated and stacked and very lightly sharpened to give the image shown at the left.
June 24, 2017.
It was clear with some scattered high mare’s tails. I set up with the ADC with my unscrewed cell of the 2x Shorty Barlow on the front and the ASI174MC behind it. Seeing was maybe a
bit better than last night, and the ADC helped a lot by really getting rid of the color fringes rather than just moving the R or B layer around later in Registax. I got 7 videos of 60
seconds duration and processed in Autostakkert, keeping the best 25% of 21916 frames. After sharpening in Registax I combined all seven to make the animated GIF shown at the
left.
I then derotated and stacked all seven images using WinJUPOS. The annotated result is shown below.
It is certainly more contrasty than the images I have been getting with the 3x Barlow, but how much of that is due to my using the ADC and the seeing being a bit better, it is hard to
say.
June 22, 2017.
It was mostly cloudy with a bit of rain, however, around 10:00 pm, a large clearing showed up overhead and permitted getting six 60 second videos of Jupiter with the ASI174MC, 3x Barlow and C-11EdgeHD. After processing with Autostakkert and Registax, the images were stitched together to make an animated GIF with GIMP.
Jupiter was low and the seeing was poor, but larger surface features, particularly an impressive blue festoon on the N edge of the EZ were visible. This particular patch of blue sky has been around for a while. I believe it is the same one present in the image taken below on June 9.
June 3, 2017. Tonight I did another experiment to test my hypothesis that flow of air through the three vents, 120° apart around the cell of my C11-EdgeHD, during the time that the telescope is thermally equilibrating was the cause of the 120 degrees apart projections on the images of Io and its shadow on May 28 as well as the experiment of June 2. I applied duct tape over all three ov the vents and opened up the observatory, immediately pointed to Jupiter and began imaging with the ASI174MC and 3x Barlow. I took 46 one minute videos, processed them with AS!2 and Regtistax6, stacking only the best 10% of the frames and then assembled all the images into an animated GIF using GIMP. The result is shown below. Note that in spite of the poor seeing (essentially the same as I had on May 28), the image of Ganymede in the lower right and the images of Io and its shadow on the right hand side of the NEB lack the ear-like projections, nly showing the expected trailing along the direction of orbital motion. So far, my experiments are consistent with the flow of cooler air into the lower two vents as warmer air flows out the top one.
I am waiting for the delivery of my fan kit from Deep Space Products and attempting to decide which of the three vents to place the fans. I will get one intake and one exhaust fan. One vent remains passive. At this point I am thinking I should put the exhaust fan on the top vent (as seen from the normal storage position with the telescope pointing due south with the tube horizontal) and the intake fan on one of the bottom vents. That should speed the natural process of warm air exiting the top and ambient (cooler) air entering the bottom. Perhaps Deep Space Products has a recommendation. I will do another experiment when they are installed to see if they help speed the equilibration process.
June 2, 2017. I went out to the observatory tonight, around 9:25 PM and opened up the foldoff roof in observatory #1 housing the CPC-1100EdgeHD and slewed the telescope up to Jupiter. Over the next couple of hours I obtained a set of videos of both Io and Jupiter to see if the strange tube currents that put "ears" on my images of the Io transit during the session last Saturday evening. It is interesting that my first image of Io obtained at 1:31 UT has less flare than the second one obtained 11 minutes later. This suggests that the tube currents responsible for the flare take a while to develop after changing the elevation of the OTA. The last two images show noticeably less flaring than the previous ones obtained over an hour earlier. There is still some flare in the last one, however. Note that the first Jupiter image obtained at 1:44 UT is considerably poorer in quality than the last two obtained after the hour cool down. Seeing was still bad though.